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Abstract A new method for the calculation of the average occupation number of bosonic 
quasiparticle excitations valid for m y  type of lattice is proposed. ?be method is based an the 
recognition of the connection between lattice Green functions and generalized Wacson integrals, 
on one hand, and on a very simple differentiation technique, which renders unnecessary and 
anificial to this problem more sophisticated Laplace-transform summation procedures. The 
mean-field approximation to Green function theories of ferromagnetism arises naturally as the 
zerolh term in the obtained summation formulae. The results have been specified completely 
for the lhree cubic lattices. They are new for the simple cubic and face-centred cases, whereas 
a certain redundancy is removed from the known body-centred cubic result. Applications of 
the method to more complex sums, such as, for instance, the thermodynamic sum for the total 
energy of the quasiparticles, ace straightforward. 

A new three-position recursion relation for the calculation of frequently occurring triple 
geometric integrals in the face-centred cubic case has also been found. It originates from a 
corresponding relation for a relevant Heun function. 

1. The problem 

The average occupation number of bosonic quasiparticle excitations is a very important 
quantity which is relevant to a variety of physical lattice problems (cf, for example, 
Vablikov 1967, Joyce 1972a, b, Tahir-Kheli 1975, Viljoen and Lemmer 1980, Mattis 1985, 
and references therein). Both thermodynamic and kinetic properties depend crucially on 
the possibility of calculating this quantity to a satisfactory accuracy for different ranges of 
temperature. It seems astonishing that the problem has not received the due attention even 
for the highly symmetric lattices such as the cubic ones. 

The sums to be calculated below are over all reciprocal-lattice vectors k in the first 
Brillouin zone of a crystal with N sites: 

where Q is a non-negative parameter 0 < Q < w 

Yk = J(k)/J(O) 

and 

J ( k )  = J(R)ei"R. 
R 
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In the theory of localized magnetism, J(R) is the exchange coupling between moments 
sitting on sites f and g with R = f - g. The physical interpretation of the parameter Q 
and of the sum Q will not be our main concern here, although some important applications 
and possible extensions will be briefly discussed. 

Most of the work related to calculating the quantity @(e) concerns lattices of cubic 
symmetry. There, the low- and high-temperature expansions (corresponding to large and 
small Q, respectively) are well known (Tahir-Kheli and ter Haar 1962, vablikov 1967). In 
an attempt to cover the whole range of temperatures, and not just the asymptotical limits, 
Flax and Raich (1969) suggested an approximate analytical procedure to calculate the sum 
for all Q and all cubic lattices. In fact, they considered a somewhat more complicated sum 
which is of importance for certain anisotropic models and which will be found in the present 
paper practically by inspection of our main results. Loly (1971) criticized the insufficient 
accuracy of their result for large Q (low temperature) and, together with Austen (Austen 
and Loly 1973), elaborated a numerical procedure to treat all values of Q. Wintucky (1972) 
extended the method of Flax and Raich and obtained the whole series (of which the latter 
authors had only given the first two terms), but only for the body-centred cubic (BCC) lattice. 
He then observed an improvement in the large-Q convergence, the checking comparison 
being carried out for the simplest case of lowest spin value S = 4 only. 
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2. The method 

The method we suggest has several advantages. First, in its general part, it applies 
equally well to any type of crystal lattice. Second, it makes contact with, and uses results 
from, the exhaustively studied field of lattice Green functions on different lattices (Joyce 
1971a. b, 1973, Abe and Katsura 1973). Third, it is very much simpler and involves simple 
differentiation techniques only, whereas Flax and Raich (1969) and Wintucky (1972) applied 
Laplace transformations and had to deal with the resulting integrals even in the simplest 
cubic cases. Besides, even the known Bcc lattice case acquires a more natural form and this 
allows for the immediate recognition of important physical facts, apart from its significance 
for the ensuing numerical computations. 

The starting point is to transform the sum to 

It is then converted to an integral over the Brillouin zone according to well known rules; this 
is harmless, because there is no condensing mode of the type encountered in Bose-Einstein 
condensation (Landau and Lifshitz 1969). Implementing trivial substitutions and letting the 
sum in the dispersion part (3) run over nearest-neighbour sites only, one has 

One then makes use in equation (4) of the series representation (Abramowitz and Stegun 
1965) 



Calculation of Bose-Einstein lattice sums 7237 

with E Q(l - y ) / r  with the result 

@ ( Q )  = I i ( Q )  + h(Q) - f 
where 

and 

(7) 

Let us introduce the functions P ( c )  

PO) = $ //l' du dydz (1 - b)-' It1 S 1. (10) 

Despite the uniformity of notation, the lattice type enters non-trivially via the respective y 
from equation (2) .  With due specification, these functions are the respective lattice Green 
functions (Joyce 1971a, b, 1973, Abe and Katsura 1973). The P(e)'s  are also known as 
generalized Watson integrals, because they reduce to the original Watson integrals (Watson 
1939) when their argument takes the value one. Our problem is thus reduced to the Watson 
integrals P(1)  via 

and to a sum involving their generalizations P(<) 

where 

with 

z E -iQ/n = iy y = -Q/n. (14) 

Note that I&[ C 1 and this holds regardless of the lattice type. One can, therefore, make 
use of the convergent expansion 

k=O 

The coefficients { A t }  are defined by the respective triple trigonometric integrals: 
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known also as F ( k )  in the cubic cases (Tahir-Kheli and ter Haar 1962). The convergence of 
the above series on the unit circle is guaranteed by the observation, which will be repeatedly 
important below, that P(C = 1) are exactly the original Watson integrals in the case of the 
cubic lattices (Watson 1939) or their direct analogues for other geometries. Interchanging 
the order of summation, one obtains from equation (12) 
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The approach we suggest is new in two respects which can be most easily comprehended 
by looking at equation (17). First, a very simple calculation of the sum over n is suggested 
which is valid for any type of lattice and in which no need arises to use special summation 
techniques and Laplace transforms (Flax and Raich 1969, Wintucky 1972). In fact, nothing 
more complex than expansion (6) will be needed to cany out the said summation. Second, 
the Ap's for all cubic lattices are calculated for m y  k by making contact with work by Joyce 
(1973) on lattice Green functions. Note that the method is completely general with regard 
to the type of lattice considered, so long as one does not have to specify the coefficients A l .  
In what follows, we prefer to characterize completely the physically most important cases 
of cubic symmetry and postpone for further investigation the cases of lower symmetry. 

3. General and simple calculation of *(Q) 

Having recognized, in equation (17). the general and particular parts of the mathematical 
problem we are facing, in this section, we proceed as far as we can without loss of 
generality, i.e. no special type of lattice is envisaged. Remembering that z = iy = -iQ/r 
(equation (14)), one easily rewrites the expression as 

The crucial observation is that, by simple differentiation rules, 

whereby 

with the definition 

2Y 
y - in 

From equation (6). this time used in the opposite direction, 

d Y )  = X m Y )  
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where L(x)  is the Langevin function, C(x) cothx - l/x. Since y = -Q/n, one has 

u(Q) = -.4Q) 
and 

d k  k dk - = (--H) 7 
dyk dQ 

Thus, we find that for any lattice 

If the last expression is inserted into equation (7), one would obtain for all cubic 
lattices the type of result which Wintucky (1972) reported for the BCC lattice. The final 
expression would, however, be somewhat redundant if kept in the resulting form. First and 
qualitatively, the persistence of the Langevin function in a quantum statistical problem such 
as the calculation of the sum O(Q) would signal a classical (spin quantum number S + CO) 

character to the assumptions of the underlying theory, which is not the case. Second, the 
reported Bcc result (Wintucky 1972) involves one and the same quantity, namely the original 
Watson integral P(1) for the BCC lattice (Watson 1939), which appears twice in different 
disguises and with opposite signs. More precisely, it seems to have been overlooked that 

where K ( k )  is the complete elliptic integral of the first kind. 

One uses the fact that 
It is, therefore, much more appealing and technically important to proceed as below. 

/?"(e) = (coth Q)(k )  - (-l)kk!/Qk'i 

and finds from equation (23) that 

The second term is precisely equal to I ,  (Q) of equation (7) so that 

1 m  Qk d' @(e) = - ~(-l)kAk--(COth Q) - f. k !  dQk k=O 

According to equation (16), A0 = 1 for all types of lattice. This simple observation provides 
for an equivalent and physically more appealing form of @(e), namely 
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where 

1 
exp(2Q) - 1 ' 

0 0  = 

In fact, 0 0  corresponds exactly to the mean-field approximation in the theory of 
ferromagnetism (Callen and Shtrihan I965), whereas coth(x) is a function which typically 
arises in a number of quantum statistical bosonized problems (Abrikosov etal 1965, Landau 
and Lifshitz 1969). At the same time, the identification of the mean-field approximation 
sheds light on the physical interpretation of the parameter Q: it  is essentially the generalized 
effective field (Callen and Shtrikman 1965). 

Furthermore, @(e) can be cast into the form of an operator expression. Defining the 
operator 

d 
dx 

6 - Q -  

one can rewrite equation (26) as 

@ ( e )  = f[k'(Q)cothx]i,,p - - 1 
2 

where the operator k is given by 

(for the very interesting specification for the BCC case, see below). 

4. The coefficients AR 

As discussed at the end of section 2, it is here that one first has to specify the type of 
lattice and, thus, reduce the generality of treatment in order to obtain definite lattice-specific 
results. Below, we concentrate on the three lattices of cubic symmetry: body-centred cubic 
(BCC), simple cubic (SC), and face-centred cubic (KC). From the definition of AA (16), we 
have explicitly 

Ak(~cc) = x3 //[ dxl dX2dx3 (COSXI . cosx2. C0SX3)k (31) 

AdSC)  = //L' dxl dxzdx3  (cosx, + cosx2 + ~ 0 ~ x 3 ) ~  
z 3  3k 

Ax(~cc) = -- I I //[ d x l d x ~ d x 3 ( c 0 s x 1 c 0 s x 2 + c 0 s x 2 c 0 s x ~  +cosx3CosXl)k. (33) 

The specification of y for the three cubic cases is obvious from the above three equations 
and comes about by carrying out the summation over nearest neighbours in equation (3) in 
the respective cases. The Ak's for the lowest values of k are easily computed, but we need a 
general expression for any k .  A common property shared by the lattice Green functions for 
the BCC and S c  cases is that they are synunetric under reflection. Hence, for both lattices, 
the Ak's  vanish identically for k = 2 p  + 1. This property does not hold for the FCC lattice. 

x3 3' 
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4.1. The BCC case 

This is the simplest case and the result for AI is easy to obtain. Namely, 

or, more pragmatically, 

(2k + l ) ! !  2k + 1 
( 2 k + 2 ) ! !  2k+Zak a o = l  

-- - at+] = (35) 

(F(z) is the gamma function). The thud power arises because of the trivial factorization of 
the corresponding trigonometric integral in this case. The At’s up to k = 6 are given in 
table 1. One then reads the final result for the Bcc case from equations (27) and (34): 

It is in this case that the operator form (30) is especially intriguing. In fact, doing some 
straightforward manipulations on equation (26). the most involved being the duplication 
formula for the gama-function (Abramowitz and Stegun 1965), one obtains a closed-form 
operator expression of the hypergeometric iype: 

(37) 

where 2F3 is a generalized hypergeometric function (Slater 1966) which acts here as 
an operator because of the nature of its argument. Note that the ‘ordinary’ function 
&($, f ;  1, 1, 1 ;  t2/4) is precisely the Laplace transform of the function (Joyce 1971b) 

@(Q)~Bcc = !j2F3(f3 $; 1, 1, 1; $b2)(cothx)lx=~ - 5 I 

This is an indication of the possibility of another derivation, since the initial summation in 
equation (12) runs precisely over R(f;’) .  We believe that the simple calculation reported 
above is sufficiently clear and convincing, although the connection with R ( ( )  and the 
operator expression might still be useful in generalizations and might offer new insights. 

Table 1. The cwfficients Ax for the three cubic laltices up to k = 6; the Q’S are givm for the 
Fcc case only. 

0 0 

1 3  1 5  1 
32 4 

1 155 1 1 3  

_ _  

7 I 135 

‘ 63 ’ ’  1 3619 1 1 135 
256 35 168 864 35 32 

5 (-) -- - _- 
805 1 165 
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4.2. The SC case 

Here, once again, A2t+, = 0, because of the reflection symmetry of the respective lattice 
Green function P ( f ) .  The result for Azk can be read off from work by Joyce (1973): 
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where 3F2($. -k. -k; 1 .  I ;  4) is a @ninating hypergeometric series (Slater 1967). A 
practically more useful result with regard to the application of our final results is the three- 
position recursion relation (Joyce 1973): 

with A-2 
In fact, the derivation of the recursion (40) by Joyce (1973) was based on a relation due 

to Watson (1910). Here we suggest an alternative recursion formula which derives from 
known properties of certain Heun functions for the lattice problem under discussion. The 
same procedure is then used for the FCC case below so that the Ak’s in the sc and FCC 
cases are treated on an equal footing,~the underlying common feature being the fact that in 
both cases the respective lattice Green functions P ( t )  can be cast as the square of a Heun 
function. 

0 and A0 = 1 (k 2 0). 

In particular, for the sc case, one has (Joyce 1973) 

On the other hand, F is defined for small x by the series 

where the coefficients IC.) satisfy another threeposition recursion relation 

a(n + l)(n + y)c.+l = ( ( a  + l)n2 + [ y  + 6 - 1 + (a + B - 8)aIn - b)c,  

- (72 - I + n)(n - I + B ) C d  (n 2 0) (43) 

with c - ,  z 0 and CO = 1 (Joyce 1973). Therefore, 

where the double infinite summation by rows and columns is converted to summation by 
diagonals (Whittaker and Watson 1962). A trivial change of the summation index ( p  -+ k) 
was used in the last step, while the coefficients of the (now) single infinite summation are 
identified as A= by virtue of the uniqueness of the convergent expansion for P(() (It1 < 1). 
That is, 
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where. specifying equation (43) to the sc case of equation (41), one computes the c.'s from 

1 

9 16.  (n + 1)2 
[4(40n2 + 20n + 3)c, - (4n - 3)(4n - l)cn-l1 (46) C,,l = 

with c-I = 0 and CO = 1. 

for the lowest values of k .  
equations (27), (45) and (46), one finds the relevant solution for this case as 

The expressions (40) and (45) of course give identical results, as can easily be checked 
From The first several coefficients are given in table 1. 

4.3. The FCC case 

As noted above, now P(() is no longer an even function of its argument so that, in principle, 
all Ax's from equation (15) can be non-zero. To our knowledge, there are no closed-form 
or recursion-type expressions for the Ak's available in the literature for this case. We, 
therefore, implement the Heun-function procedure which was just described for the sc case. 
One has (Joyce 1973) 

p(C)FCC = [F(-3,& 4, 1, 1, 1; e)]*.  (48) 

Using the expansion F ( a ,  b; a, p ,  y. 6 ;  6 )  = c.6" as above, one finds 

with 
k 

Ah = Ck-& 
'7-0 

The difference now is that the c,'s are defined by another three-position recursion relation: 

This straightforward way of calculating the coefficients Ak(FCC) for any k has escaped 
attention and is, in fact, new. Note that the proper triple trigonometric integrals 

Al(FCC) = 3'7I3Ak(FCC) 

can be easily obtained for any k. Thus, the adopted procedure leads naturally to an 
important by-product. The ck's and the Ah's for several values of k are collected in table 1 
together with the AZ's for the other cubic lattices. With the At's thus specified and from 
equations (27) and (49), the final result for the Fcc case reads 

l m  Qk dk 
@(Q)Fcc = 00 + 5 C(-l)kAx--(~~th Q). 

k=l k !  dQk 
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5. Generalizations 

A more general sum which has been evaluated by Wintucky (1972) for the BCC case only 
can easily be found essentially by inspection of the above procedures. The sum is 

Y Millev and M Fiihnle 

Starting with equation (l), the effect of q # 1 in equations (7)-(10) is to appear as an extra 
factor multiplying y :  

Y - rlY. 

By inspection of equation (lo), one traces down that 

and, hence, 

The extended (q  # 1) expressions for Z,.,(Q, n)  now read 

As q < 1, the convergence of expansion (15) is only improved. The sums over k 
acquire a factor of q"+', while the crucial expression uk(y) from equation (22) remains 
unaltered. Tnerefore, one immediately arrives at the final result 

for any type of lattice. The particularization to the cubic lattices proceeds as above. 
A further generalization is the calculation of the sum which gives, up to a factor which 

is irrelevant to the present discussion, the iota1 energy as a sum over the energy of the 
individual quasiparticles: 

1 Yk = 
exp[2Q(l - qm)] - 1' 

Apart from its fundamental thermodynamic significance, the sum is important in the 
improved Callen decoupling scheme of the Green function approach to ferromagnetism 
where the renormalization of the energy spectrum of the excitations is non-trivial and is 
dominated by the total energy, and not by the net magnetization, over a certain range of 
temperatures (Callen 1963, Tahir-Kheli 1975). It is plain to see that the presence of the 
extra factor of in the numerator of equation (56) raises by one the power of the dispersion 
factor yk in the integrals Ax in equations (31)-(33). The same method works unrestrictedly, 
while the minute adjustments can be carried out easily. 
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6. Summary 

A new method for the calculation of the average occupation number @(a) of bosonic 
quasiparticle excitations for any type of lattice has been presented. The method is very 
simple and, in its general part, is valid for all types of crystal lattice. Its crucial components 
are: (i) simple differentiation technique in taking the summation over k in equation (17) 
which completely avoids former sophisticated methods such as Laplace transformations and 
additional integrations arising thereupon-in fact, no special knowledge beyond expansion 
(6) for cothx is required; and (ii) the recognition of the connection with the theory of the 
lattice Green functions and the implementation of work done in this field. 

The general new result is given by equation (27) and is characterized in detail for the 
BCC, S c  and FCC cases separately (only the BCC result in a redundant form was known 
before). The mean-field approximation arises naturally as the zeroth term of the series 
representation of @(e) and reveals the physical interpretation of the parameter Q; up to a 
numerical spin-dependent factor, it is the generalized effective field in magnetic theory. 

An operator formulation of the general result has been presented. It is particularly 
intriguing in the BCC case, where the sum @ can be cast as a closed-form operator 
hypergeometric function & Its ordinary (non-operator) counterpart is the Laplace 
transform of the function R(<) = i P ( i )  studied previously in lattice statistical problems. 

The required coefficients AI and, hence, the frequently occumng triple trigonometric 
integrals, have been systematized. While the AI'S in the BCC case are well known and 
there is a recursion relation for them in the S c  case, a novel procedure valid for both 
the sc and FCC cases has been developed. It is based on previous knowledge about the 
respective Heun functions the squares of which give the lattice Green functions pf.6)~~ and 
P ( ~ ) F C C ;  the calculation of the AI'S for any k involves a straightforward summation over 
the coefficients c, (equations (46) and (49)) which are calculated from simple threeposition 
recursion relations. The results for A n ( ~ c c )  for general k have not been reported so far. 

The generalization to the more complex sum @(e. q )  with 0 < q < 1 (equation (51)) 
is then found by inspection. This sum is relevant to the Green function theory of 
anisotropic ferromagnets where the parameter q measures the strength of the anisotropy 
(17 = 1 corresponding to the isotropic case). The additional total-energy sum &(e, q )  of 
equation (56), which is relevant to more elaborate decoupling schemes of the Green function 
approach to the theory of ferromagnetism, can be derived from the reported results without 
any difficulty. 

Finally, the particular interest in calculating as completely as possible the average 
occupation number of quasiparticle excitations is motivated by the desire to go beyond the 
mean-field approximation in determining the temperature dependence of magnetic anisotropy 
and magnetostriction coefficients within the very general theory of Callen and Callen (1965) 
(du Tremolet 1993) which was recently extended and supplemented by an efficacious 
parametric approach (Millev and Fihnle 1994a, b). Preliminary work in this direction is 
under way (Millev and Fiihnle 1994~). 
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